Ford Technology & Iceland as a Proving Ground

North Atlantic Hydrogen Association Conference Reykjavik, Iceland

Dr. Scott M. Staley, P.E. Chief Engineer

Research & Advanced Engineering

April 23, 2008

Outline

- Ford Technology EV, H2ICE, FCEV
- Ford Focus FCEV Experience to date
- Iceland as a Proving Ground
- Prospects for a Hydrogen Future

Ford EV Technology



1992 - 1993 Ford Ecostar

1998 - 2000 Ford Ranger and Postal Program

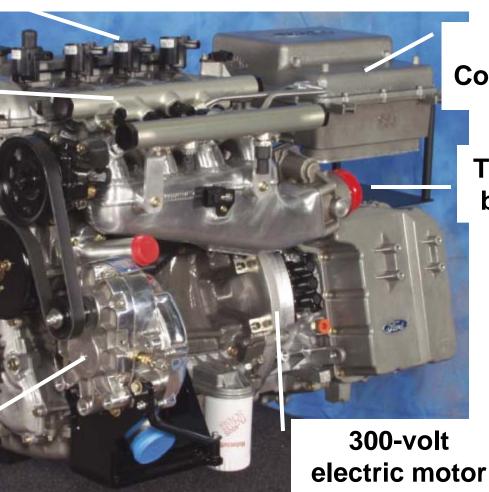
2001 Th!nk city

2002 Th!nk neighbor

Ford H2ICE Technology

Ford Model U - Hydrogen ICE

Bob Natkin, Group Leader Hydrogen Internal Combustion Engine


H₂ ICE-HEV Powertrain Generation II

2.3L 4 cylinder engine

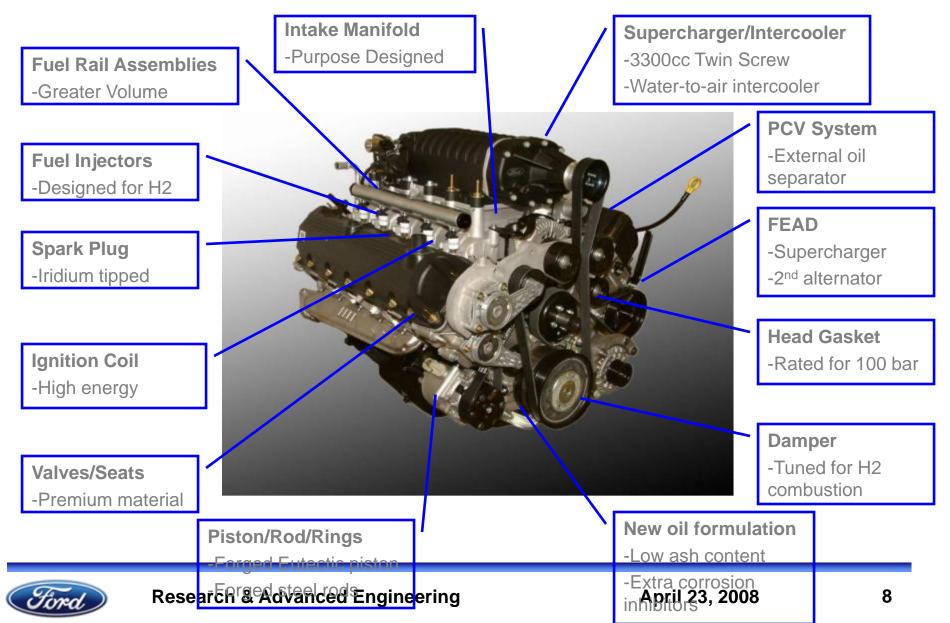
Dual fuel rails and H₂ injectors

Dual-stage intercoolers (not shown)

Supercharger

HEV Controller

> Throttleby-wire

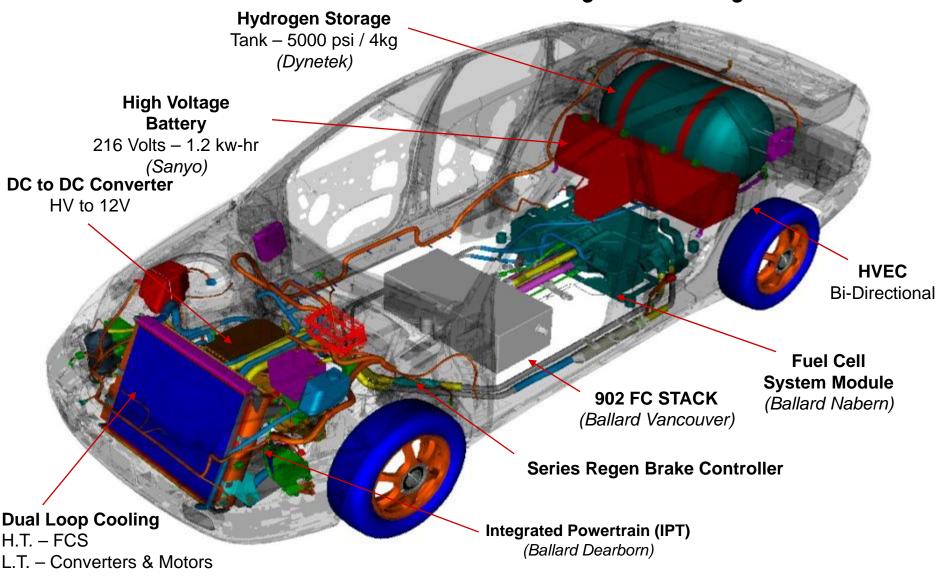


Unique H2ICE Hardware

Ford FCEV – Experience to date



Ford Fuel Cell Vehicle Technology P-2000 FCEV


2005 Focus Fuel Cell Vehicle

- Ford Focus 4 Door
- Curb Mass: 1600 kg (3520 lbs)
- Fuel Cell: Ballard Mark 902 FC STACK
- Power: 68kW (87hp)
- Powertrain: Integrated AC Induction
- Hybridized 216 volt Battery Pack
- Series Regenerative Braking
- City = 48 Mi/Kg H₂ (49 MPG gas equivalent)
- Hwy = 53 Mi/Kg H₂ (54 MPG gas equivalent)
- Range: 200 mi/320 km
- Max speed: 80+ mph/128+ kph
- Fuel: 5000 psi Compressed Hydrogen
- Emissions: Zero
- Cold Start Capability > 2 C
- Operational Capability: -15 C up to 50 C

FCV Architecture - Key Subsystems

Ballard Fuel Cell Engine

Air Compressor/expander & emotor drive system

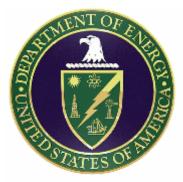
Air/H2 Humidifiers

DI Water storage & Injection System

H2 pressure regulation and recirc system

4 row stack

110 cell/row


80 kW gross power

Cell Voltage Monitor

TDV2 in LA Auto Show

2006 L.A. Auto Show: Ford Explorer Fuel Cell

Ford is debuting what looks like a standard Explorer SUV in L.A. this week, but it actually packs a hydrogen powertrain; a tank of the alternative fuel can take the Explorer 350 miles on a single fill-up.

The fuel cell prototype is partially funded by the U.S. Department of Energy in order to show a viable alternative to petroleum. We'd have to assume the government wouldn't want to invest in any hydrogen infrastructure without seeing some real working samples on the road.

The fuel cell Explorer has been tested over more than 17,000 miles, and traveled 1,556 miles in a 24-hour period. Ford will also launch its next-generation Escape and Escape Hybrid compact SUVs tonight at midnight.

TDV7 – Ford Edge with HySERIES Drive

Jora

April 23, 2008

207 mph (330 kph)

Iceland as a Proving Ground

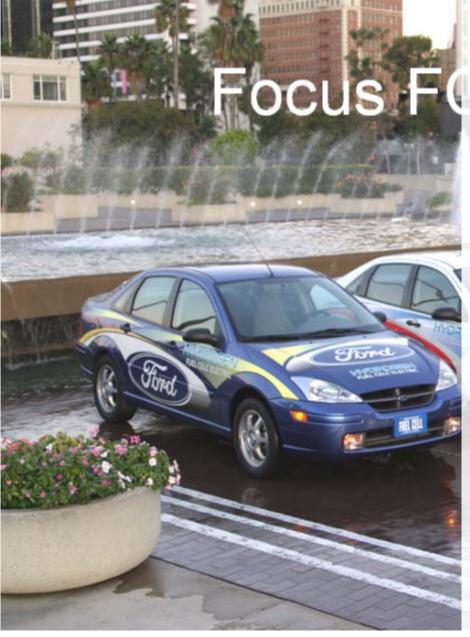
Ford Corporate Testing Procedures Vehicles Robustness and Durability Testing

14,000 Ft Altitude Testing

Mud Bath / Salt Water Fording

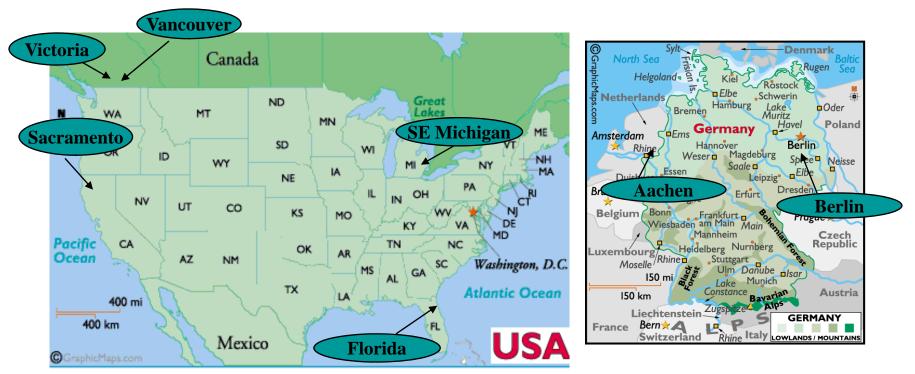
90° Fixed Barrier Impact

Sault Ste Marie Brake Testing -18 C



Cobblestone Roads

90° Moving Barrier Impact


Focus FCV Demonstration

• 3 years

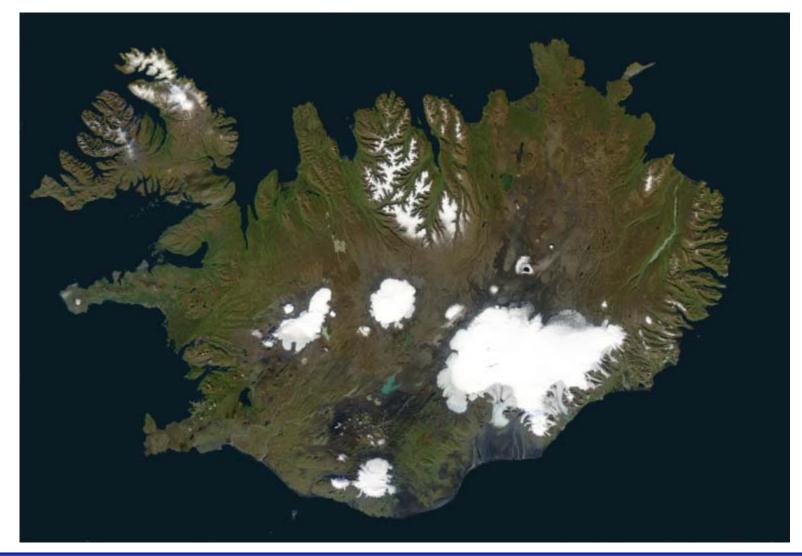
- 30 vehicles (18 in DOE)
- 750,000 miles
- 150 participants
- 9 fueling locations
- 95% up time

Ford Focus FCEV Vehicle Locations

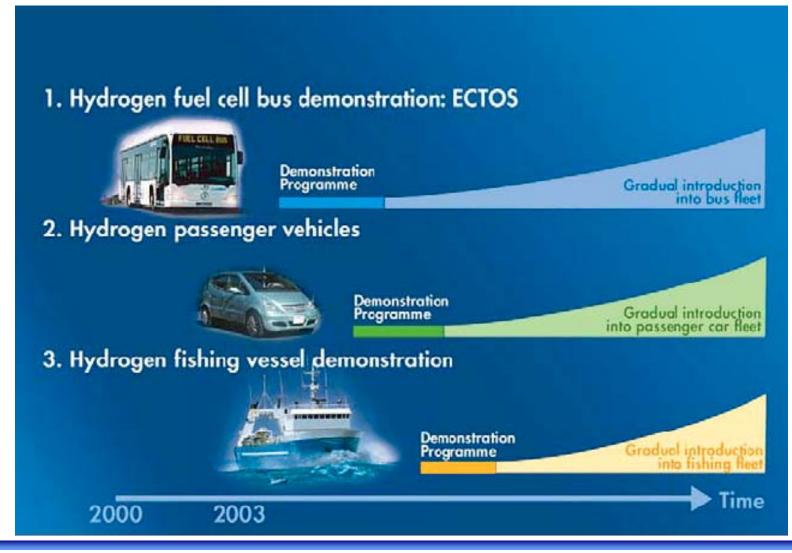
- 32 FCV in operation worldwide (US, Canada & Germany)
- 27 Vehicles Delivered to 7 Customer locations
- 18 Vehicles in the DOE-funded Demonstration Fleet
- 5 Engineering vehicles used between Dearborn and Sacramento

Driving innovation

THE VANCOUVER FUEL CELL VEHICLE PROGRAM


NHA Annual Hydrogen Conference 2006 Long Beach, California

Berlin CEP



And Now, Iceland

Iceland has a Plan

Iceland has Hydrogen Infrastructure

Iceland has Experience

Iceland has Technical and Scientific Contributions

Journal of Cleaner Froduction 14 (2006) 52-64

www.elsevier.com/ocate/jclepre

Implementing the hydrogen economy

Maria H. Maack a,b,*, Jon Bjorn Skulason b

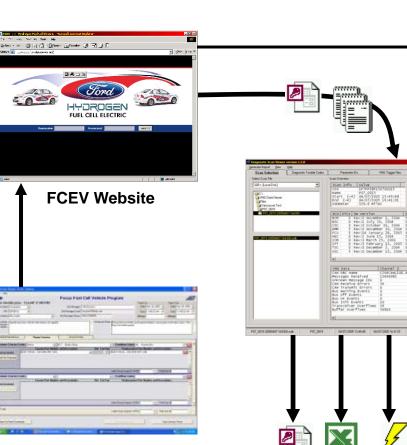
^a University of lockind, lockand ^b Ioclandic New Energy, Borgarius 37, 105 Reykjavk, Iocland Received 27 August 2004; scoreptid 5 May 2005 Available online 11 July 2005

Abstract

In the Icelandic community the use of renewable energy and the tests with a clean domestic fuel that most people refer to as the fuel of the future have become the points of focus. In Reykjavk this future has arrived. Hydrogen is used currently as the energy carrier within the public transportation system and is electrolyzed from water with hydroelectric power and leaves the system as water again.

Figure 1. The fael cell bus at the filling station

The US DOE, Ford and INE add another FCV to the Iceland Fleet

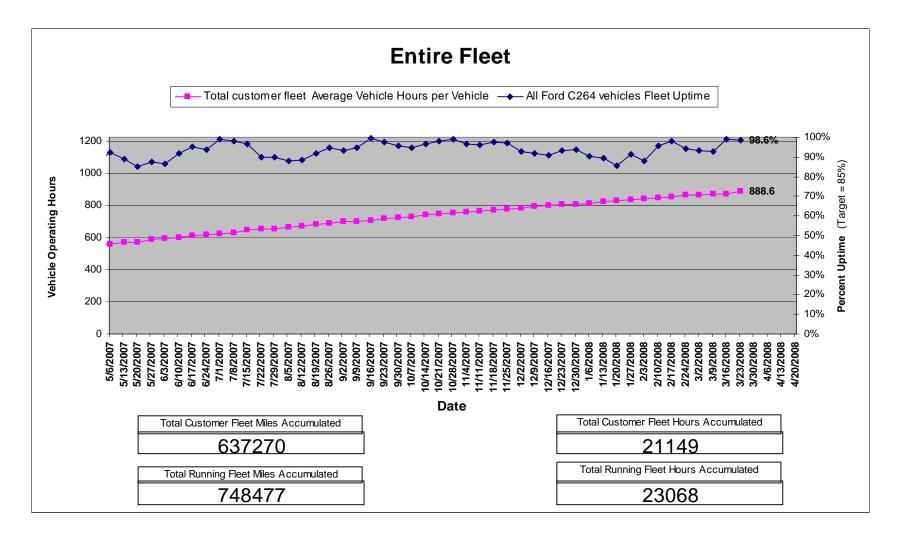

Fleet Data Collection & Reporting

Valuele Infu	1 failed	4.14e	Manager/Signal Del	atta Dispositi	town - Logarg	Absorbable
ehicle Sele	ction List					Current
ID	IP Address	Status	Last Update Date/Time	Service Location	VNG Version	Service
4P-23	10.0.0.105	2	9/23/2004 2 00 43 PM	Unknown	Unknown	
4P-24	10.0.0.106	?	9/23/2004 2 01:03 PM	Unknown	Unknown	Location:
4P-26	10.0.0.107	2	9/23/2004 2 21:18 PM	Default Location	vng-3.26.0	Default Location
4P-26	10.0.0.108	2	9/23/2004 2:01:03 PM	Unknown	Unknown	Deraun Locanoi
CP-12	10.0.0.12	2	9/23/2004 2 01 03 PM	Unknown	Unknown	
CP-16	100016	2	11/3/2004 2 37 12 PM	Detault Location	vng-3.26.0	Commands
CP-17	100017	9	10/28/2004 4 04 43 PM	Default Location	vng-3.26.0	Query
CP-18	100018	2	9/23/2004 2:01:03 PM	Unknown	Unknown	Vehicles
CP-19	10.0.0.19	9	10/28/2004 4:17:57 PM	Default Location	vng-3.26.0	Test Scan
CP-20	100020	2	9/23/2004 2:01:03 PM	Unknown	Unknown	
CP-21	10.0.0.21	2	9/23/2004 2:01:03 PM	Unknown	Unknown	
CP-22	10.0.0.22	2	9/23/2004 2:01:03 PM	Unknown	Unknown	Scan All
P01_0009	10.0.0.109	2	9/23/2004 2 01 03 PM	Unknown	Unknown	Data
P02_0010	10.0.0.110	2	9/23/2004 2 01 03 PM	Unknown	Unknown	Sourceman and
P03_0011	10.0.0.111	2	11/3/2004 3 15:37 PM	Default Location	vng-3.26.0	
P04_0012	10.0.0 112	2	9/23/2004 2 01 03 PM	Unknown	Unknown	Court
P06_0013	10.0.0.113	2	9/23/2004 2:01:03 PM	Unknown	Unknown	
P06_0014	10.0.0.114	?	9/23/2004 2:01:03 PM	Unknown	Unknown	Clear ALL
007 0015	10.0.0.116		91222004 2:01:02 PM	Interven	Ilninnen 2	DTC's
Connect				Select Vehicle from List and press Connect.		Export Database

Service Monitor Application

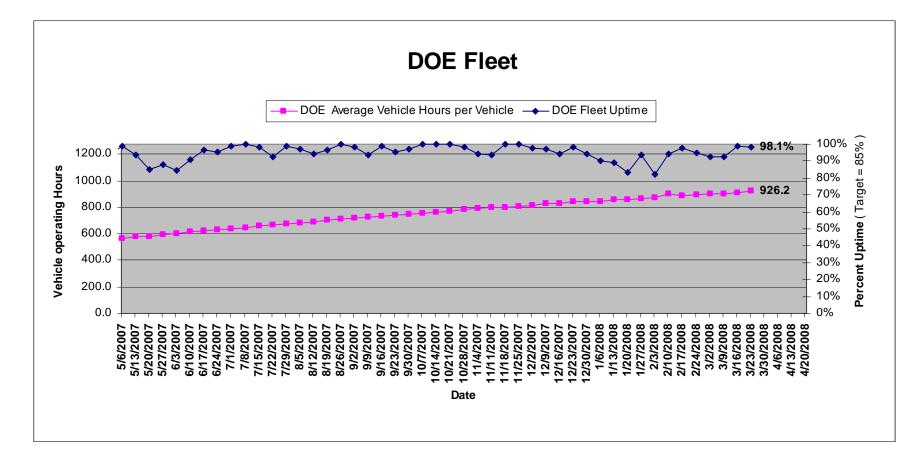
FCEV (Fuel Cell Electric Vehicle)

Technician Repair Order System (TROS)

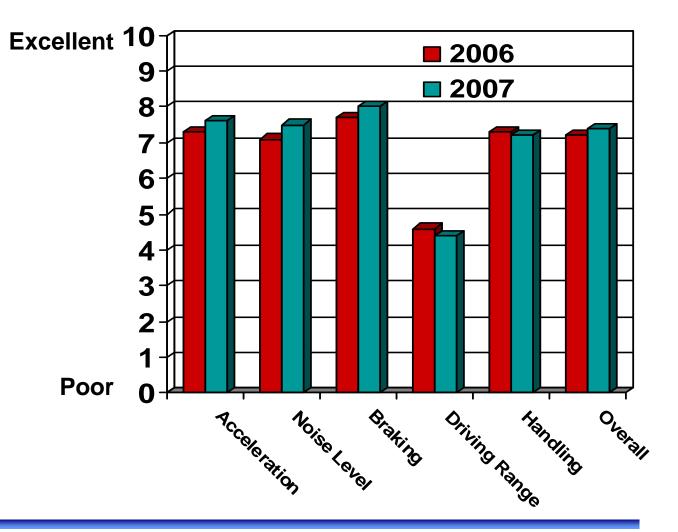


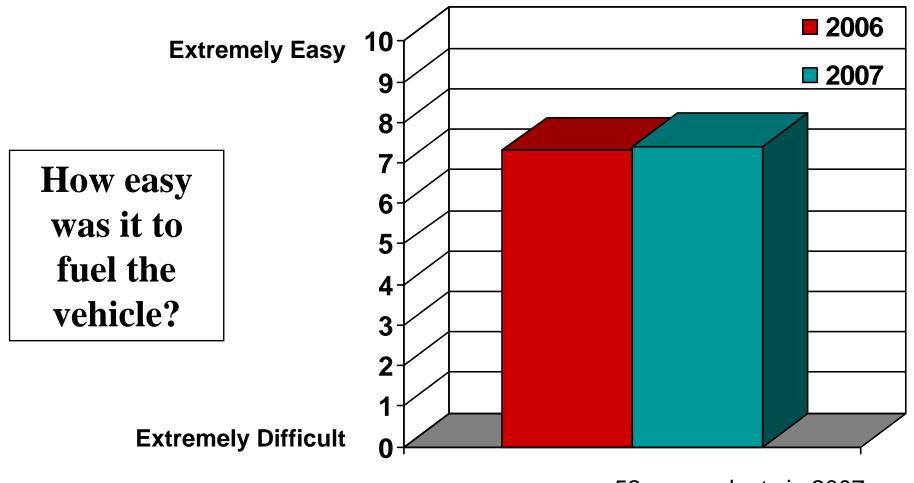
Diagnostic Scan

Viewer



Entire Fleet


DOE Vehicles


Highlights from Fleet Customer Survey

How would you rate the vehicle's performance?

Highlights from Fleet Customer Survey

52 respondents in 2007

The Hydrogen Future Bookends

Conclusions with Respect to a Sustainable Energy Future

A sustainable energy future must be based on energy from renewable sources and energy efficiency

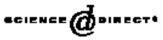
Hydrogen must be fabricated from renewable electricity

By laws of physics much energy is needed (and lost) for producing, packaging, distributing, storing and using hydrogen: (Losses about 50% for gaseous hydrogen and 75% for electricity from fuel cells)

Hydrogen cannot compete with its own energy source: RENEWABLE ELECTRICITY

Therefore, a global "Hydrogen Economy" has no future!

In fact, the hasty implementation of a Hydrogen Economy may block the establishment of a sustainable energy future based on electricity from renewable sources


35

Ulf Bossel, Ph.D., October 2004

Available online at www.sciencedirect.com

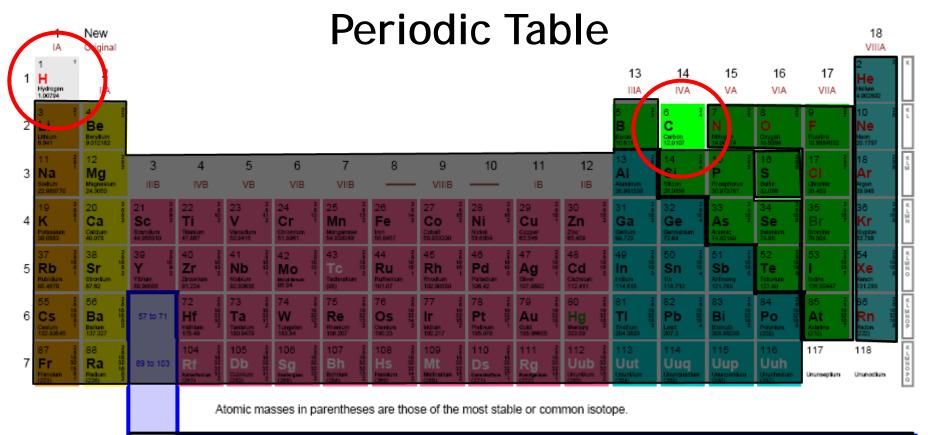
Solar Energy 78 (2005) 647-660

www.elsevier.com/locate/solener

Wind energy and the hydrogen economy—review of the technology

S.A. Sherif a,*, F. Barbir b, T.N. Veziroglu c

 ^a University of Florida, Department of Mechanical and Aerospace Engineering, 232 M AE-B, P.O. Box 116300, Gainesville, FL 32611-6300, United States
^b Connecticut Global Fuel Cell Center, 44 Weaver Road, Unit-5233, Storrs, CT 06269-5233, United States
^c Clean Energy Research Institute, University of Miami, P.O. Box 248294, Coral Gables, FL 33124, United States


Received 12 November 2002; received in revised form 29 November 2004; accepted 4 January 2005 Available online 12 March 2005 Communicated by: Associate Editor Ali Raissi

Abstract

The hydrogen economy is an inevitable energy system of the future where the available energy sources (preferably the renewable ones) will be used to generate hydrogen and electricity as energy carriers, which are capable of satisfying all the energy needs of human civilization. The transition to a hydrogen economy may have already begun. This paper presents a review of hydrogen energy technologies, namely technologies for hydrogen production, storage, distribution, and utilization. Possibilities for utilization of wind energy to generate hydrogen are discussed in parallel with possibilities to use hydrogen to enhance wind power competitiveness. © 2005 Elsevier Ltd, All rights reserved.

Keywords: Hydrogen energy; Wind energy; Fuel cells; Solar energy; Hydrogen production; Hydrogen storage

Design Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.dayah.com/periodic/.															
57 5 La 15 Lantianum 5 138.9055	58 Ce Celum 140.116	o office of	59 2 Pr 21 Praesedymian 2 140.00765	60 ² Nd ²⁸ Nicodymium ² 144.24	61 2 Pm 25 Promethum 2 (145)	62 2 10 10 10 10 10 10 10 10 10 10 10 10 10	63 2 Europhum 2 151.084	64 18 Gd 18 Gadsinium 2 157.25	65 2 Tb 27 78 78 155,92534 2 2 2 2 2 2 2 2 2 2 2 2 2 2	66 2a by 25 Dy 25 162:500 2	67 to 164,032032	68 ² Er ³⁵ Ettur ² 167.259	69 48 Tm 35 Thuliam 2 165.03421	70 28 Yb 39 Ybyblum 2 173.04	71 2 Lu 12 Lutetium 2 174.057 2
89 Ac activities	90 Th Thotum 232,0381	10000 man	91 ² Pa ³⁰ Potectriae ⁹ 231.03588 ⁹	92 2 U 22 Uterium 22 230 00891 2	93 ² Np ¹⁶ Neptunium ⁹ (237) ²	94 2 Pu 32 Putorium 2 (244) 2	95 2 Am 32 Americiam 2 (245)	96 2 Cm 32 Curlum 2 (247) 2	97 2 Bk 32 Betslum 2 (247) 2	98 28 Cf 223 Californium 2 (251)	99 ² Es ¹⁰ Ensteinium ⁸ (202)	100 20 Fm 32 Famium 30 Famium 32	101 ² Md ³² ^{Marchite} ²	102 ² No ³⁰ Notetum ² (200)	103 to Lr to Lawrencium S

Conclusion: hydrogen and carbon are the only important elements in transportation fuels.

Wheel-to-Wells Findings

- Electricity would be the ideal transportation fuel.
 - Lowest CO₂ impact with today's generation mix.
 - Distribution infrastructure is already in place.
 - But ... on-board storage meaning range and recharge time are unacceptable
- Hydrogen (for fuel cells) from natural gas is the best chemical fuel.
 - But ... Depends on limited fossil fuel resource
 - On-board storage remains a major challenge
 - No existing retail infrastructure
 - Fuel cell systems are much more expensive than ICE
- Hydrocarbon from fossil petroleum is the poorest fuel on a CO₂ basis.
 - But ... is the most practical in the vehicle
 - Retail distribution and infrastructure are in place
 - Efficiency improvements continue to be made (HEV, PI-HEV, S-HEV)

U.S. DoE Hydrogen Activities

Hydrogen, Fuel Cells and Infrastructure Technologies Program

Toward a More Secure and Cleaner Energy Future for America

A NATIONAL VISION OF America's Transition to A HYDROGEN ECONOMY -TO 2030 AND BEYOND

Based on the results of the National Hydrogen Vision Meeting Washington, DC November 15-16, 2001

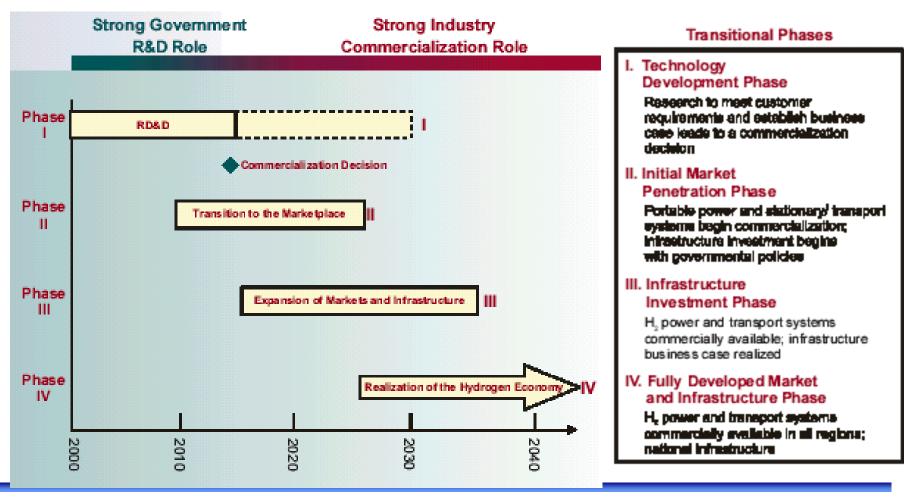
February 2002

Toward a More Secure and Cleaner Energy Future for America

HYDROGEN POSTURE PLAN

AN INTEGRATED RESEARCH, DEVELOPMENT, AND DEMONSTRATION PLAN

February 2004



Research & Advanced Engineering

April 25. 2000

DOE Hydrogen Plan

Ford

Research & Advanced Engineering

April 23, 2008

Can it be done?

Research & Advanced Engineering

Should it be done?

With the following clear trends:

- \$117/barrel Oil
- Emerging world economies (China, India, etc.)
- Global environmental concerns
- Energy security concerns

Something must be done!

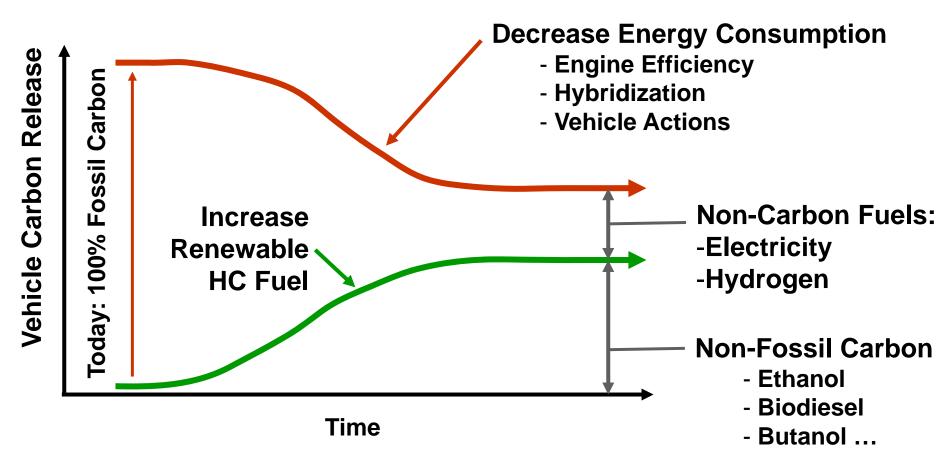
Will it be done?

- Can Durability, Freeze-start, and other technical performance attributes be achieved?
- Can On-Board Hydrogen Storage be achieved?
- Can Hydrogen Fuel Supply & Infrastructure be installed?
- Can Codes and Standards be agreed?
- Can Affordability be achieved?
 - simplified system design
 - reduced material cost
 - mass production

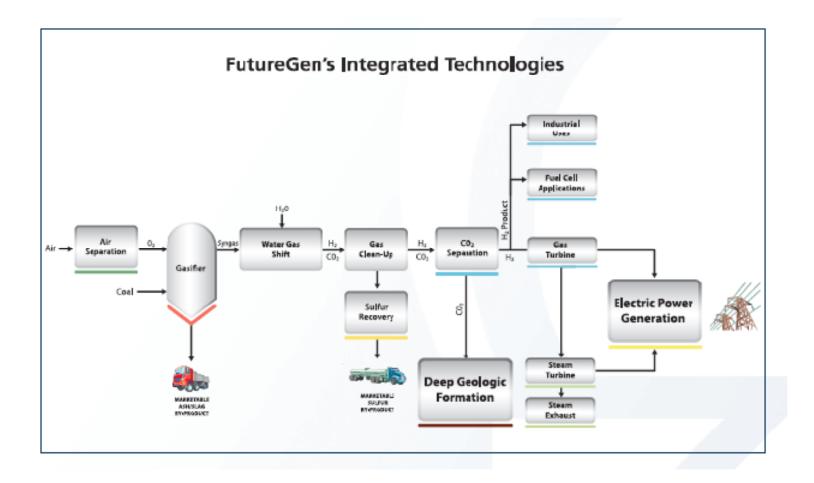
The World is NOT Running Out of Energy

But it is running out of...

- Cheap oil
- Environmental capacity
- Tolerance for inequity
- Money for better options
- Time for a smooth transition
- Leadership to do what is required


Ford's Portfolio Approach

Research & Advanced Engineering


Path to CO₂-neutral Transportation

What <u>realistic</u> combinations of fuels and vehicle technologies can drive net CO₂ emission from light-duty transportation to zero?

Integrated Gasification Combined Cycle

Research & Advanced Engineering

Fuel Cell Vehicles

Research & Advanced Engineering

April 23, 2008