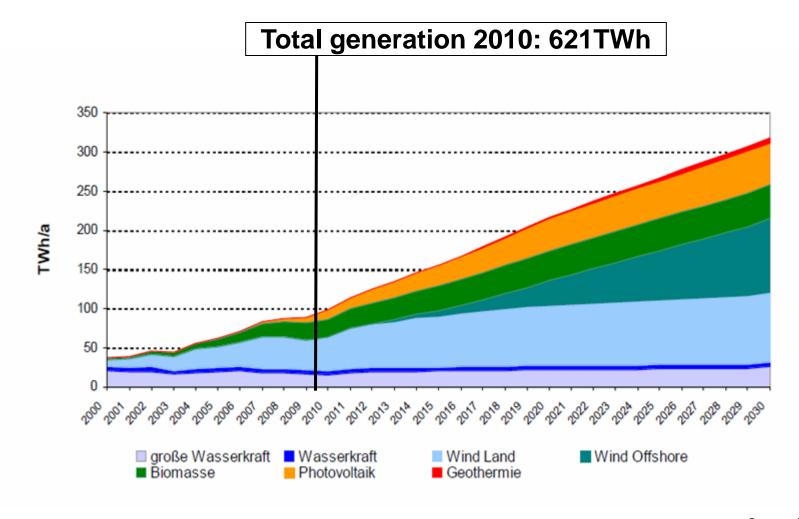

# **Transition of the Energy System and Electric Mobility**

Iceland, INE Conference, Oct 4th, 2012

Oliver Weinmann Vattenfall Europe Innovation GmbH



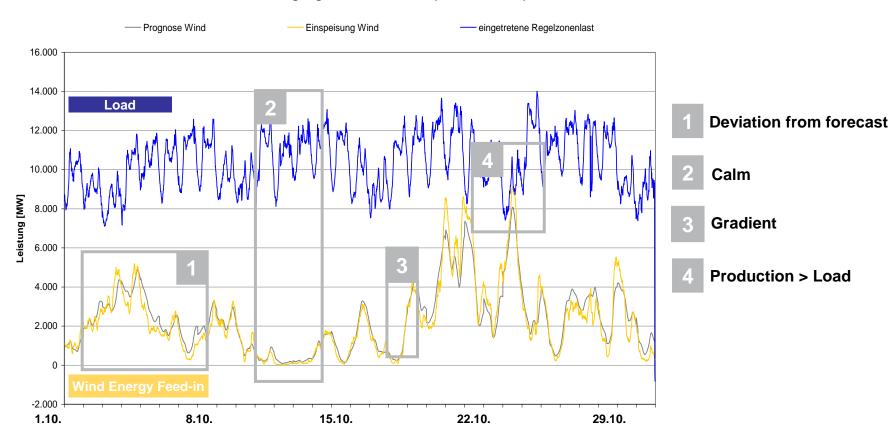

# **Transition of the Energy System**



Source: VDMA



## **Renewable Power Generation Development in Germany**




Source: BMU

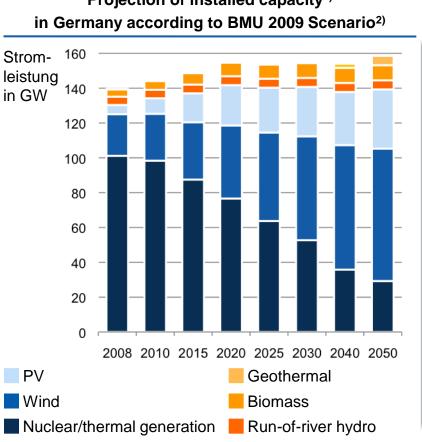


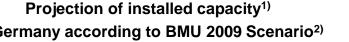
## Volatile wind integration is a new challenge for transmission grids in terms of system stability

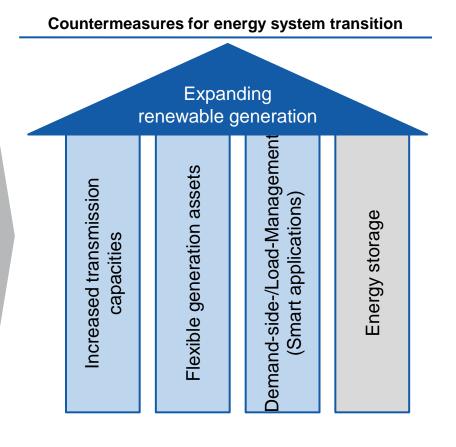
Load, Wind Energy Forecast and Wind Energy Feed-in in East Germany (01-31.10.2010)



Verläufe im Übertragungsnetz der 50Hertz (01.-31.10.2010)


Data source: 50Hertz Transmission


Not utilized wind power in 2010: some 150 Mio. kWh (ca. 40000 households)


5 | Transition of the Energy System and Electric Mobility | Oliver Weinmann | Oct 4, 2012



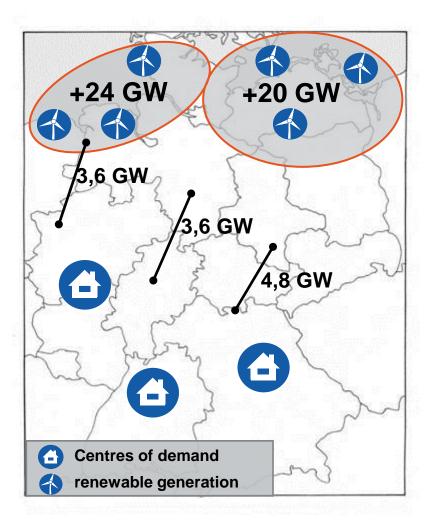
### Market projections show strong renewable growth requiring various countermeasures in the energy system







1) Without pumped-storage


2) BMU: Bundsministerium für Umwelt, Naturschutz und Reaktorsicherheit

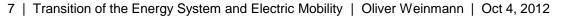
Transition of the Energy System and Electric Mobility | Oliver Weinmann | Oct 4, 2012 6



#### **Grid extension**

## **Bottleneck in Transport Capacity North-South**




Already today the north-south lines are heavily loaded during high wind feed in

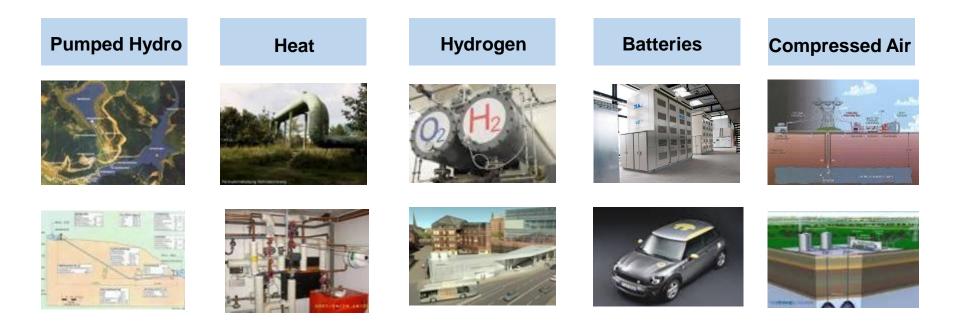
44 GW new generation until 2020 vs.12 GW new transport capacity

Fast increase of grid capacities is required

Source: 50Hertz Transmission & TenneT GmbH Prognosen für 2020 \*Kapazitäten der Leitungen siehe Bundestag Drucksache 16/10491, Begründung zum EnLAG

Source: 50hertz




VATTENFALL 😂



## Investment needed until 2022: 1.5-2b€ p.a.

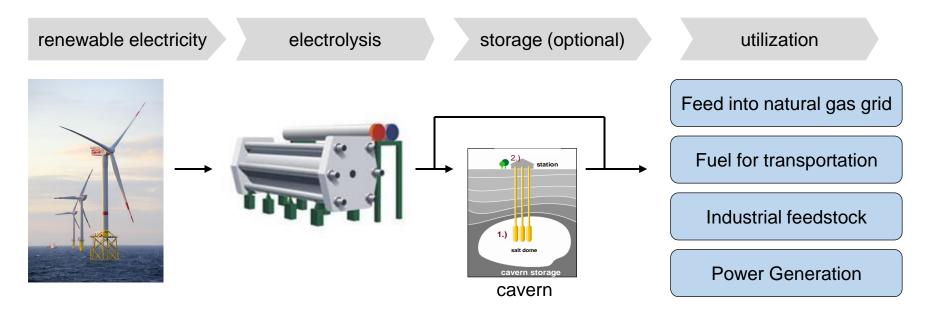
Source: NEP 2012, Stand: Mai 2012, www.netzentwicklungsplan.de







# Pumped hydro storage


- Profen technology
- High efficiency
- Relatively low specific storage capacity
- Main limitation: New sites hardly possible to develop







# Wind-Hydrogen



### Advantages:

Option to store large amounts of energy – high storage capacity

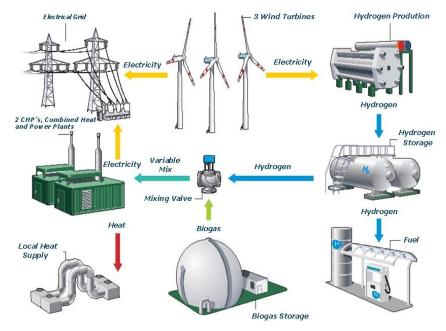
Different value chains for hydrogen

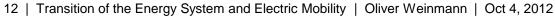
Almost no site restrictions

### **Disadvantages:**

Core component electrolysis needs to be further developed For power generation the overall efficiency is weak Business cases are uncertain

11 | Transition of the Energy System and Electric Mobility | Oliver Weinmann | Oct 4, 2012


Source: LBST




# Hydrogen Storage – Hybrid Power Plant

- Enertrag, Vattenfall, Total and Deutsche Bahn are opearting a wind-hydrogen hybrid power plant
- Wind farm with direct coupling to electrolyzer
- Hydrogen storage
- Utilization of hydrogen in small scale CHP and for external use
- In operation since Nov 2011









## **Batteries stationary**



2 x 0.5MW/3.6MWh NaS Batterie (Younicos)

### Options

- Local applications
- Avoiding of grid congestions
- Peak load shaving
- Avoiding of investments
- Offering of grid service (voltage stabilisation etc.)

## Applications in the area of grid optimisation and smart grids





# Electric Mobility - Hydrogen / Fuel Cells and Battery EVs

# Refueling infrastructure: Vattenfall builds largest European hydrogen station in Hamburg HafenCity Hydrogen



- Lighthouse project of the Clean Energy Partnership consortium broad initiative of the industry to develop the market entry of hydrogen / fuel cell, supported by the German government
- Production and delivery of hydrogen to busses and vehicles
- Start of operation February 2012
- On site production of hydrogen with electrolysis (50%) 520 kg hydrogen per day
- From 2012
  - Hamburger Hochbahn will extend the Daimler fuel cell bus fleet (7 busses until 2013 with ramp up after 2013)
  - Daimler will deliver up to 500 fuel cell vehicles until 2015



## "H<sub>2</sub> Mobility" Initiative – Overcoming the Chicken and Egg Dilemma

- Memorandum of Understanding for "H<sub>2</sub>-Mobility" signed Sept. 10th 2009 in Berlin
- Ten key stakeholders from industries (OEM, oil, utility & industrial gas) and NOW as public-private-partnership
- Intention to build up hydrogen fueling infrastructure and establishing Germany as lead market



 $\pm 3$  | Transition of the Energy System and Electric Mobility | Oliver Weinmann | Oct 4, 2012



Hydrogen

## Main achievements and selected end products for pilot market Germany Hydrogen

| Roll-out<br>scenarios for H <sub>2</sub><br>station network<br>and FCEVs | <ul> <li>Development of FCEV roll-out scenarios with car<br/>OEMs via "clean team" based on assumptions (e.g.,<br/>incentives, market environment)</li> <li>Assessment of H<sub>2</sub> station rollout and network<br/>requirements (e.g., density, sizes)</li> </ul>                                                          | FCEV car park                                                                                                                                                                    |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Roll out regions and timing                                              | <ul> <li>Analyses of German regions on traffic density, income per capita, car registrations, etc.</li> <li>Definition of "focus regions" and connecting highways</li> </ul>                                                                                                                                                    |                                                                                                                                                                                  |
| H <sub>2</sub> production<br>and supply road<br>map                      | <ul> <li>Assessment of H<sub>2</sub> production technologies on cost<br/>and CO<sub>2</sub> emissions (water electrolysis, steam<br/>methane reforming, etc.)</li> <li>Definition of H<sub>2</sub> production and supply mixes<br/>focusing on CO<sub>2</sub> abatement, sustainability, and<br/>economic efficiency</li> </ul> | Carbon footprint<br>Garbon footprint<br>GCG<br>GIGCC<br>Dist, SMR<br>GIGR ref.<br>GG+CCS<br>Biogas ref.<br>Biomass ref.<br>SMR+CCS<br>IGCC+CCS<br>WE (RECS)<br>Production costs, |
| Holistic roll-out cases                                                  | <ul> <li>Description of consistent rollout case for Germany</li> <li>Financial assessment of roll-out cases including<br/>NPV, investment, payback time</li> <li>Evaluation of risks and sensitivities</li> </ul>                                                                                                               |                                                                                                                                                                                  |



## Vattenfall's E-Mobility expertise from various projects

### Battery



\*\*) Federal Ministry of Transport, Building and Urban Development (BMVBS)

# **Current offerings: www.vattenfall.de/emobility**











# Vattenfall offers integrated solutions for E-Mobility



### Customers

### **B2C**:

 Private customers with and without dedicated parking slots

### **B2B**:

- Automakers
- Companies with large fleets and car park operators

### **B2G**:

- Public charging infrastructure
- Governmental fleets



# A charging infrastructure is implemented in three urban core markets of Vattenfall

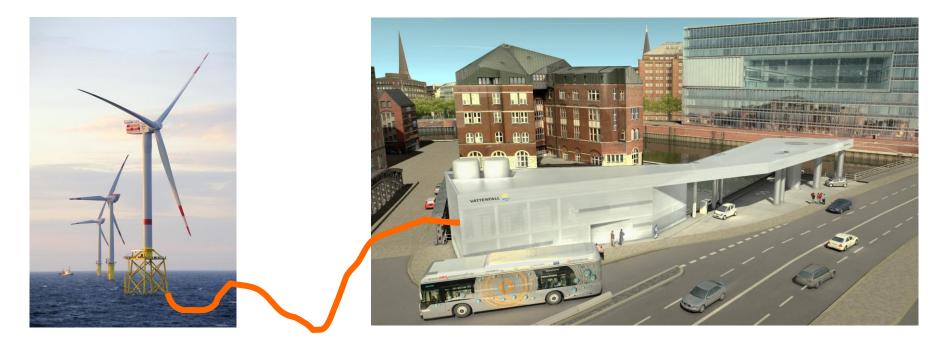
#### infrastructure implemented

- Amsterdam
- Berlin
- Hamburg



> 250 charging points in Amsterdam > 80 charging points in Berlin > 60 charging points in Hamburg






# Conclusions

- Strongly increasing share of renewables in most European countries
- wind and solar power will play a major role -> volatile power feed in
- The present electricity supply system was not built to cope with large amounts of volatile renewables
- Different countermeasures are possible, but there is no silver bullet
- Additional power lines storage will be required to integrate more renewables in our system
- The transition is possible from a technical point of view, but electricity prices will increase
- Electric vehicles (H2/FC and BEV) will enter the market in the coming years
- Adequate charging infrastructure build up is crucial for the success of EV market introduction
- For BEVs business models for private infrastructure (B2C, B2B) viable, but difficult for public solutions,
- business case for hydrogen refueling infrastructure exists, but not very favorable in the beginning
- Electric vehicles can supply moderate storage capacities to the grid



# Thank you



Oliver Weinmann Vattenfall Europe Innovation GmbH oliver.weinmann@vattenfall.de

23 | Transition of the Energy System and Electric Mobility | Oliver Weinmann | Oct 4, 2012

